Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 926, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689798

RESUMO

Cytosolic citrate is imported from the mitochondria by SLC25A1, and from the extracellular milieu by SLC13A5. In the cytosol, citrate is used by ACLY to generate acetyl-CoA, which can then be exported to the endoplasmic reticulum (ER) by SLC33A1. Here, we report the generation of mice with systemic overexpression (sTg) of SLC25A1 or SLC13A5. Both animals displayed increased cytosolic levels of citrate and acetyl-CoA; however, SLC13A5 sTg mice developed a progeria-like phenotype with premature death, while SLC25A1 sTg mice did not. Analysis of the metabolic profile revealed widespread differences. Furthermore, SLC13A5 sTg mice displayed increased engagement of the ER acetylation machinery through SLC33A1, while SLC25A1 sTg mice did not. In conclusion, our findings point to different biological responses to SLC13A5- or SLC25A1-mediated import of citrate and suggest that the directionality of the citrate/acetyl-CoA pathway can transduce different signals.


Assuntos
Citratos , Ácido Cítrico , Animais , Camundongos , Acetilcoenzima A , Acetilação , Fenótipo
2.
Mol Metab ; 67: 101653, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513219

RESUMO

BACKGROUND: Key cellular metabolites reflecting the immediate activity of metabolic enzymes as well as the functional metabolic state of intracellular organelles can act as powerful signal regulators to ensure the activation of homeostatic responses. The citrate/acetyl-CoA pathway, initially recognized for its role in intermediate metabolism, has emerged as a fundamental branch of this nutrient-sensing homeostatic response. Emerging studies indicate that fluctuations in acetyl-CoA availability within different cellular organelles and compartments provides substrate-level regulation of many biological functions. A fundamental aspect of these regulatory functions involves Nε-lysine acetylation. SCOPE OF REVIEW: Here, we will examine the emerging regulatory functions of the citrate/acetyl-CoA pathway and the specific role of the endoplasmic reticulum (ER) acetylation machinery in the maintenance of intracellular crosstalk and homeostasis. These functions will be analyzed in the context of associated human diseases and specific mouse models of dysfunctional ER acetylation and citrate/acetyl-CoA flux. A primary objective of this review is to highlight the complex yet integrated response of compartment- and organelle-specific Nε-lysine acetylation to the intracellular availability and flux of acetyl-CoA, linking this important post-translational modification to cellular metabolism. MAJOR CONCLUSIONS: The ER acetylation machinery regulates the proteostatic functions of the organelle as well as the metabolic crosstalk between different intracellular organelles and compartments. This crosstalk enables the cell to impart adaptive responses within the ER and the secretory pathway. However, it also enables the ER to impart adaptive responses within different cellular organelles and compartments. Defects in the homeostatic balance of acetyl-CoA flux and ER acetylation reflect different but converging disease states in humans as well as converging phenotypes in relevant mouse models. In conclusion, citrate and acetyl-CoA should not only be seen as metabolic substrates of intermediate metabolism but also as signaling molecules that direct functional adaptation of the cell to both intracellular and extracellular messages. Future discoveries in CoA biology and acetylation are likely to yield novel therapeutic approaches.


Assuntos
Ácido Cítrico , Lisina , Camundongos , Animais , Humanos , Acetilcoenzima A/metabolismo , Lisina/metabolismo , Ácido Cítrico/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Retículo Endoplasmático/metabolismo , Citratos/metabolismo
3.
Mol Cancer Ther ; 13(6): 1664-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24723451

RESUMO

Sunitinib, an inhibitor of kinases, including VEGFR and platelet-derived growth factor receptor (PDGFR), efficiently induces apoptosis in vitro in glioblastoma (GBM) cells, but does not show any survival benefit in vivo. One detrimental aspect of current in vitro models is that they do not take into account the contribution of extrinsic factors to the cellular response to drug treatment. Here, we studied the effects of substrate properties including elasticity, dimensionality, and matrix composition on the response of GBM stem-like cells (GSC) to chemotherapeutic agents. Thirty-seven cell cultures, including GSCs, parenchymal GBM cells, and GBM cell lines, were treated with nine antitumor compounds. Contrary to the expected chemoresistance of GSCs, these cells were more sensitive to most agents than GBM parenchymal cells or GBM cell lines cultured on flat (two-dimensional; 2D) plastic or collagen-coated surfaces. However, GSCs cultured in collagen-based three-dimensional (3D) environments increased their resistance, particularly to receptor tyrosine kinase inhibitors, such as sunitinib, BIBF1120, and imatinib. Differences in substrate rigidity or matrix components did not modify the response of GSCs to the inhibitors. Moreover, the MEK-ERK and PI3K-Akt pathways, but not PDGFR, mediate at least in part, this dimensionality-dependent chemoresistance. These findings suggest that survival of GSCs on 2D substrates, but not in a 3D environment, relies on kinases that can be efficiently targeted by sunitinib-like inhibitors. Overall, our data may help explain the lack of correlation between in vitro and in vivo models used to study the therapeutic potential of kinase inhibitors, and provide a rationale for developing more robust drug screening models.


Assuntos
Antineoplásicos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/tratamento farmacológico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/administração & dosagem , Glioblastoma/patologia , Humanos , Técnicas In Vitro , Células-Tronco Neoplásicas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...